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- DataOps Introduction with Definitions
« What's improved with DataOps

- Use Case: ETL

« Why Every Data Team Needs a DataOps Framework
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DATAOPS

A methodology that associates with DevOps to
promote the automation of data orchestration

Improve communication and integration in a data team.




- Shorten the software development life cycle and provide continuous delivery with high software
quality.

- Generate (I mean detect) bugs, code fast, deploy faster, promise the application always
functioning.

- Improve collaboration between developers and system operation engineers.
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Data Pipeline Automation

- Speed up the development and deployment of automated data
workflows (within data pipeline).
- Improve collaboration inside data team:
- data scientists,
- data engineer,
- data/Bl analyst,
- data quality analyst
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Components of DataOps in MLOps workflow
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What's improved with
DataOps

A
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You have data and a story to tell

Development and Monitoring
I Deployment of Data

Processing scripts i and Testing
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Infrastructure

Improved:

- Provisioning a large-scaled
infrastructure is faster with automation
jobs.

- Infrastructure states are more
manageable with Infrastructure-as-Code.

- Resource availability and scalability can
be configured automatically.
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External Use © Datics Consulting
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Development and Deployment of
Data Processing scripts

Improved:

- Differences between local development and
production environments are reduced.

- Deployment cycle is shortened and done
automatically with the help of CI/CD pipeline.
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Development and Deployment of
Data Processing scripts

Improved:

- Differences between local development and
production environments are reduced.

- Deployment cycle is shortened and done
automatically with the help of CI/CD pipeline.
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Monitoring and testing

- Monitor for data anomalies. Quality of
data model, traceablility, computing

resource, metrics. E
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Monitoring and Testing

M Data Factory

= Activity = Activity = Activity = Activity - Activity = Activity
Ingest 57 @ Clean Data i @ Check Data Quality B % Build Meta Data . @ Build Log

A

A
g
-]
@
=]
3

A

= Activity = Activity = Activity = Activity = Activity

>§ Build Log

= & oo

@ GitHub Repository |
Data Factory DataBricks ©)
Pipeline Scripts Notebooks : { GitHub Actions

S
L]
)
g
&
(@
5
@
5

22.



Monitoring and Testing

Application
Operating System
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Azure Subscription
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The case of ETL
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User data
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User data
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Transform Data
Data Warehouse

29.



Traditional Approach for ETL

Data Extraction:
* Data Source — Relational Databases
* Way of extraction- Batch

Data Transformation:

* Location for transformation— On premises
* Flexibility- less

* Scalability- difficult

Data Loading:

= Analysis impact- slows down

* Expenses- hardware to suit on-site processing
* Error prone

External Use © Datics Consulting
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ETL - DataOps
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DataOps
Framework




Why every data team
needs a DataOps Framework

r
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Why every data team
needs a DataOps Framework

—

Data team should focus on dealing with
data, not the infrastructure and IT system
operation

aﬁ

DataOps framework gives a set of tools
and technologies >> by using framework,
data team can start to work on data faster

External Use © Datics Consulting
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* DataOps uses DevOps
methodology building
a DataOps framework,
which automizes and
shortens the time of data
orchestration operation
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Why every data team needs a DataOps Engineer

- Collaborate with the data team and help to
build the framework based on the team's
favorite data tools and also suggested tools
from DataOps engineers.
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Conclusion:
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Conclusion: more efficiency and agility
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