

Interpretable Machine Learning Do you know what your model is doing?

Marcel Spitzer

Marcel Spitzer Big Data Scientist @ inovex

- Applied Mathematics, Data Science
- SW Engineering, Machine Learning
- Big Data, Hadoop, Spark

Interpretation is the process of giving explanations to humans.

~ Kim B., Google Brain, Interpretable Machine Learning (ICML 2017)

"Interpretability is the degree to which an observer can understand the cause of a decision."

~ Miller T., 2017, Explanation in AI: Insights from the Social Sciences

humans create decision systems
humans are affected by decisions
humans demand for explanations

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

The additional need for interpretability

The additional need for interpretability

The decision process of a model should be **consistent to the domain knowledge** of an expert.

In particular, it ...

- should not encode bias
- should not pick up random correlation
- should not use leaked information

Use models that are **intrinsically interpretable** and known to be easy for humans to understand.

2 Train a black box model and apply **post-hoc interpretability techniques** to provide explanations.

Post-hoc interpretability techniques

	Global	Local
Model-specific	Model Internals, Intrinsic Feature Importance	Rule Sets (Tree Structure)
Model-agnostic	Partial Dependence Plots, Feature Importance (perm-based), Global Surrogate Models	Individual Conditional Expectation, Local Surrogate Models

Feature Shuffling

- averages degradation measured by a certain loss function after repeatedly permuting single features
- feature is important if the error significantly increases after a shuffle

Feature Shuffling

- estimates feature importance
- highly compressed, global insight
- tied to some loss function
- not applicable in high dimensional domains (e.g. image/text classification)

17

Individual Conditional Expectation (ICE)

- shows dependence of the response on a feature per instance
- single curve results from varying a certain feature for a given instance
- inconsistent pattern indicates multicollinearity

Partial Dependence Plots (PDP)

- PDP curve is the result of averaging ICE curves
- > very intuitive, easy to understand
- assumption of independence is a strong drawback

Global Surrogate Models

BAD	CUSTOMER_DTI	LOAN_PURPOSE	CHANNEL
0	0.18	MORT	7
1	0.42	HELOC	10
0	0.11	MORT	10
0	0.21	MORT	1

1. Train a complex machine learning model

x ₁
x ₂
h ₁₃
X4 Complex neural network

8AD	PREDICTED_BAD	CUSTOMER_DTI	LOAN_PURPOSE	CHANNEL
0	0.47	0.18	MORT	7
1	0.82	0.42	HELOC	10
0	0.18	0.11	MORT	10
0	0.12	0.21	MORT	1

2. Train an interpretable model on the original inputs and the predicted target values of the complex model

Local Surrogate Models: LIME

- feeds original model with small variations of instance to be explained
- sampled instances are weighted by proximity to the instance of interest
- interpretable models are fit locally on observed outcome

Local Surrogate Models: LIME

Original Image P(tree frog) = 0.54

Explanation

Conclusion

- performance metrics are crucial for evaluation, but they lack explanations
- criteria like fairness and consistency are much harder if not **impossible to quantify**
- the problem with blackboxes is the lack of trust caused by their opaque nature
- transparency is key to achieving trust and acceptance in the mainstream

Conclusion

Resources

- Molnar C., 2018, Interpretable Machine Learning A Guide for Making Black Box Models Explainable
- > Gill N., Hall P., 2018, An Introduction to Machine Learning Interpretability
- > Zhao Q., Hastie T., 2017, Causal Interpretations of Black-Box Models
- Kim B., Doshi-Velez F., 2017, Interpretable Machine Learning: The fuss, the concrete and the questions
- Ribeiro, M.T., Singh, S. and Guestrin, C., 2016, August. Why should i trust you? Explaining the predictions of any classifier

Machine Learning Interpretability: Do You Know What Your Model Is Doing?

Gepostet am: 13. Februar 2019 Marcel Spitzer

Vielen Dank

Marcel Spitzer Big Data Scientist mspitzer@inovex.de

inovex GmbH Schanzenstraße 6-20 Kupferhütte 1.13 51063 Köln

Why do we need interpretability?

safety	system should provide sound decisions
curiosity	understand something unexpected
debugging	behaviour should be predictable
optimality	optimize for true objectives

When we may <u>not</u> need interpretability

low riskno significant consequencesawarenessproblem is well-studiedvulnerabilityprevent people from gaming the system

NIPS 2016 workshop on Interpretable Machine Learning for Complex Systems

ICML 2016 Workshop on Human Interpretability in Machine Learning

NIPS 2017 Workshop on Interpreting, Explaining and Visualizing Deep Learning

NIPS 2017 symposium and workshop: interpretable and Bayesian machine learning

ICML 2017 Workshop on Human Interpretability in Machine Learning

ICML 2018 Workshop on Human Interpretability in Machine Learning

Recommendations for interpretability techniques

> Who is the recipient?

- \circ Lay-Men \rightarrow rather intuitive, example-based local explanations
- \circ Analysts \rightarrow global surrogates, perm-based feature importance
- \circ Authorities \rightarrow intrinsically interpretable models

> What are the explanations used for?

- \circ Debug/Improve \rightarrow PDP & ICE curves
- \circ Decision support \rightarrow rule-based explanations
- \circ Auditing/Legal \rightarrow intrinsically interpretable models

- ➢ pyBreakDown
- > PyCEbox
- > SHAP
- > Skater
- tensorflow/model-analysis
- > TreeInterpreter

- > ALEPIot
- > breakDown
- > DALEX
- > ICEbox
- ≻ iml
- ➤ lightgbmExplainer
- ≻ lime
- ≻ live
- ≻ pdp
- ≻ vip
- ➤ xgboostExplainer

