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Interpretable Machine Learning

Do you know what your model is doing?
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Hey! | need a loan.
Canl getone?
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Hey! | need a loan.
Canl getone?
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Hmmm...
No, rather not.

https://pixabay.com 6
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Interpretation

Is the of
giving explanations
to

https://people.csail.mit.edu/beenkim/papers/BeenK_FinaleDV_ICML2017_tutorial.pdf



“Interpretability is the degree to which an observer

can understand the cause of a decision.”
~ Miller T., 2017, Explanation in Al: Insights from the Social Sciences

> humans decision systems
> humans are affected by decisions
> humans demand for explanations

https://arxiv.org/pdf/1706.07269.pdf
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(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

https://arxiv.org/abs/1602.04938



The additional need for interpretability
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The additional need for interpretability

The decision process of a model
should be consistent to the
domain knowledge of an expert.

e =)l

Interpretation |::> w

In particular, it ...

e should not encode bias
e should not pick up random correlation fcq antitya
e should not use leaked information —

https://arxiv.org/pdf/1606.03490.pdf
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Use models that are intrinsically interpretable and
known to be easy for humans to understand.

Train a black box model and apply post-hoc
interpretability techniques to provide explanations.




Post-hoc interpretability techniques

Model Internals,
Intrinsic Feature Importance

Rule Sets (Tree Structure)

Partial Dependence Plots,
Feature Importance (perm-based),
Global Surrogate Models

Individual Conditional Expectation,
Local Surrogate Models




Feature Shuffling

> averages degradation
measured by a certain loss
function after repeatedly
permuting single features

> featureisimportant if the
error significantly increases
after a shuffle

https://amunategui.github.io/variable-importance-shuffler/
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Feature Shuffling

estimates feature importance
highly compressed, global insight

tied to some loss function

v V VvV Y

not applicable in high dimensional
domains (e.g. image/text
classification)

https://christophm.github.io/interpretable-ml-book/feature-importance.html https:/scikit-plot.readthedocs.io/en/stable/estimators.html#scikitplot.estimators.plot_feature_importances

Feature

Age

Num.of.pregnancies
First.sexual.intercourse 4
Hormonal.Contraceptives..years. 4
Number.of.sexual.partners
Hormonal.Contraceptives -
STDs..Time.since.first.diagnosis
1UD

STDs..number.

Smokes

Smokes..years. q

STDs q

IUD..years. 4
STDs..Number.of.diagnosis 4

STDs..Time.since.last.diagnosis -

4
Feature Importance
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Individual Conditional Expectation (ICE)

> shows dependence of the response
on a feature per instance

> single curve results from varying a
certain feature for a given instance

> inconsistent pattern indicates

multicollinearity

https://christophm.github.io/interpretable-ml-book/pdp.html
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Partial Dependence Plots (PDP)

> PDP curveis the result of averaging
ICE curves

\

very intuitive, easy to understand

> assumption of independenceis a
strong drawback
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https://christophm.github.io/interpretable-ml-book/pdp.html
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Global Surrogate Models

X1
CUSTOMER_DTI = LOAN_PURPOSE CHANNEL h11 \
0 0.18 MORT 7 X5 ha1
i 0.42 HELOC 10 S hi2 >‘
0 0.11 MORT 10 x3 / h22
0.21 MORT 1 h1 3
1. Train a complex machine learning model X4 Complex neural network

CUSTOMER_ DTl |~ LOAN_PURPOSE  CHANNEL ‘ % %

0.47 0.18 MORT 7
0.82 042 HELOC 10 ..o Interpretable decision tree
0.18 0.11 MORT 10 OI‘

0.12 0.21 MORT 1

2. Train an interpretable model on the original inputs and the

[ ]
predicted target values of the complex model Interpretable linear

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning




Local Surrogate Models: LIME

> feeds original model with small
variations of instance to be explained

> sampled instances are weighted by
proximity to the instance of interest

> interpretable models are fit locally on
observed outcome

https://christophm.github.io/interpretable-ml-book/lime.html
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Local Surrogate Models: LIME

Perturbed Instances | P(tree frog)

——>%
— Locally weighted
’ regrision
0.00001
Original Image
P(tree frog) = 0.54
0.52

Explanation

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime



Conclusion

e performance metrics are crucial for evaluation,
but they lack explanations

e criterialike fairness and consistency are much
harder if not impossible to quantify

e the problem with blackboxes is the lack of trust
caused by their opaque nature

e transparency is key to achieving trust and
acceptance in the mainstream

23



Conclusion

https://pixabay.com
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Conclusion

don't end up like this!

https://xkcd.com/1838/

N

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE. DATA INTO THIS BIG
PILE OF LNEAR ALGEBRA, THEN (COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLEERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Resources

> Molnar C., 2018, Interpretable Machine Learning - A Guide for Making
Black Box Models Explainable

> GillN., Hall P., 2018, An Introduction to Machine Learning Interpretability
> /Zhao Q., Hastie T., 2017, Causal Interpretations of Black-Box Models
> Kim B., Doshi-Velez F., 2017, Interpretable Machine Learning: The fuss,

the concrete and the questions
> Ribeiro, M.T,, Singh, S. and Guestrin, C., 2016, August. Why should i trust

you? Explaining the predictions of any classifier
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Why do we need interpretability?

safety system should provide sound decisions
curiosity understand something unexpected
debugging behaviour should be predictable

optimality optimize for true objectives

https://people.csail.mit.edu/beenkim/papers/BeenK_FinaleDV_ICML2017_tutorial.pdf
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When we may not need interpretability

low risk no significant consequences
awareness problem is well-studied

vulnerability prevent people from gaming the system

https://christophm.github.io/interpretable-ml-book/interpretability-importance.html
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https://arxiv.org/html/1611.09139v1
https://arxiv.org/html/1611.09139v1
https://arxiv.org/html/1607.02531v2
https://arxiv.org/html/1607.02531v2
http://www.interpretable-ml.org/nips2017workshop/
http://www.interpretable-ml.org/nips2017workshop/
https://hongsupshin.com/2017/12/16/nips-2017-symposium-and-workshop-interpretable-and-bayesian-machine-learning/
https://hongsupshin.com/2017/12/16/nips-2017-symposium-and-workshop-interpretable-and-bayesian-machine-learning/
https://arxiv.org/html/1708.02666
https://arxiv.org/html/1708.02666
https://sites.google.com/view/whi2018/home
https://sites.google.com/view/whi2018/home

Recommendations for interpretability techniques

> Whois the recipient?

o Lay-Men — rather intuitive, example-based local explanations
o Analysts — global surrogates, perm-based feature importance
o Authorities — intrinsically interpretable models

> What are the explanations used for?

o Debug/Improve — PDP & ICE curves
o Decision support — rule-based explanations
o Auditing/Legal — intrinsically interpretable models
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> ALEPIlot
> breakDown
> DALEX
= > |CEbox
lime = iml
7o > lightgbmExplain
> pyBreakDown > lime
> PyCEbox = live
> SHAP > pdp
> Skater > vip
> tensorflow/model-analysis > xgboostExplainer
> Treelnterpreter




